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Abstract—Reconstruction of radio interferometric images re-
quires the processing of data in Fourier space that dot not have
regular coordinates, preventing direct use of the Fast Fourier
Transform. The most common solution is to rely on interpolation
algorithms, called gridding, that are computationally expensive.
In this paper, we propose an algorithmic reinterpretation, named
sky to sky method, to reduce the computation cost of the gridding
operation and its adjoint, the degridding, when used successively.
We analyze the impact of interpolation step size regarding the
computation cost and the reconstruction error. We also illustrate
this optimization on a full reconstruction with gradient descent
and CLEAN algorithm. Finally, we obtain acceleration factors
between 1.2 and 16.4 without additional approximation.

Index Terms—Interpolation, inverse problem, gridding, Com-
putation acceleration.

I. INTRODUCTION

Radio interferometric imaging is a technique that recon-
structs an image of the sky from a radio observation [1].
Since the data sample incompletely the Fourier space, the
reconstruction can be seen as a Fourier synthesis problem that
is known to be ill-posed [2]. Moreover, the current and future
generations of radio-telescope, such as VLA, LOFAR [3],
or SKA [4], are characterized by a higher dynamic range
and a higher resolution than the previous generation. These
characteristics come with a very large amount of generated
data, making our problem large-scaled.

We can find in the literature many different techniques to
reconstruct an image of the sky based on the forward problem.
A common technique in the radio-astronomy community is the
standard CLEAN method and its variants [5], [6], implemented
in imagers such as DDFacet or WSClean [7], [8]. Alternatively,
we can find techniques based on compressed sensing and
convex optimization techniques for image deconvolution [9],
[10].These techniques are based on algorithms that repetitively
apply forward and adjoint operators. In radio interferometry,
the measurements are Fourier coefficients and their coordinates
are non-uniform or non-regular. Non-uniform discrete Fourier
transform [11] is known to have a high computing cost because
of the high number of measurements to process. Thus, a
common technique is to use the FFT to interpolate the measure
on a regular grid using “gridding” and “degridding” operators.
As the model of MRI image reconstruction is close to the
Radio interferometric one, MRI uses similar interpolation
methods. MRI methods tend to use nuFFT due to the lower

amount of data [12], [13], which is currently not feasible
for modern radio telescopes. Due to the huge amount of
data to process, especially with the upcoming instruments
like SKA, the computation of these operators needs to be
reduced. In order to address these challenges, we propose a
reinterpretation with a new and more efficient implementation
of well-established algorithms.

In the first part, we will see the radio interferometric imag-
ing problem and the mandatory gridding and degridding steps.
Then, the algorithmic optimization based on the succession
of the forward and adjoint operators, defined as the sky to
sky (S2S) method, will be presented. Finally, we will present
results on time and memory consumption of this optimization,
which will be illustrated with the Cotton-Schwab CLEAN
algorithm to estimate a simulated sky.

II. RADIO INTERFEROMETRIC IMAGING

A. Forward problem

A radio interferometer array is a network of antennas that
generates measures of the radio emission of the observed sky
x. Each antenna’s pair is defined with a baseline b = (u, v,w)
where u, v, and w are the coordinates in unit of wavelength
λ. The measurement of one antenna pair of baseline b, or
so-called visibility, is defined as

v(u, v,w) =

∫∫
x(l ,m,n)

n
e−2iπ(ul+vm+w(n−1)) dl dm (1)

where x is the sky brightness distribution using a coordinate
system (l , m, and n =

√
1− l2 − m2) that indicates an

angular position. If the array of antennas is coplanar (w ≈ 0)
and the FOV is small (n ≈ 1), each visibility v(u, v) is
the 2D spatial Fourier transform of the sky distribution at
frequency (u, v). This result is known as the van Cittert-
Zernike theorem [1], and Eq. (1) becomes

v(u, v) =
∫∫

x(l ,m)e−2iπ(ul+vm) dl dm. (2)

Since the array cannot cover the full (u, v) plan, radio inter-
ferometric imaging aims to recover the sky from incomplete
visibility measurements, leading to an ill-posed inverse prob-
lem.

After discretization, the true sky can be represented by N×
N = P pixels grid as x ∈ RP , and the visibility measurement



as a vector v ∈ CM . Relation between x and v is described
by the discrete forward problem

v = SFx+ n (3)

where F ∈ CP×P is the Fourier transform, S ∈ CM×P maps
M visibilities to P Fourier coefficients (similar to a sampling
operator and called “degridding”), and n ∈ CM is an i.i.d.
Gaussian noise. Finally, the “dirty image” y ∈ RP is defined
as the back propagation of the visibilities, or the application
of the adjoint y = F †S†v where F † is the inverse Fourier
transform and S† ∈ CP×M is the “gridding” operator, adjoint
of S, that interpolate visibilities on regular coordinates.

B. Gridding operator

In most cases, visibilities do not have regular coordinates
because they are sampled in time, not in distance. In order to
use an FFT, the output of F needs to be interpolated on the
visibility coordinates.

The continuous coordinate bi = (ui , vi) associated with the
visibility vi is approximated to the position of the nearest
neighbor on a thin grid with steps (∆u,∆v), such as the new
coordinate is

b̃i = (ni∆u,mi∆v). (4)

If K is the oversampling factor, the FFT steps of the grid g
are (K∆u,K∆v). In that case, the gridding operator S† for
the FFT coordinate bkl = (nkK∆u,mlK∆v) is defined as

g(bkl) =

M∑
i=1

C†(bk − b̃i
)
vi

=

M∑
i=1

C†(nkK∆u − ni∆u,mlK∆v −mi∆v

)
vi

(5)

where C† is a 2D kernel of size Csupp × Csupp in FFT step.
The choice and the size of this interpolator to avoid aliasing
effects and maximize the accuracy is a well-known subject in
the literature, see for instance [14]–[16]. In our case, we used
the Kaiser-Bessel function with a support Csupp = 7.

C. Sky estimation

The sky x reconstruction for incomplete data v is an ill-
posed inverse problem. Therefore, interferometric imaging is
usually defined as

x̂ = argmin
x

∥v − SFx∥2 +R(x) (6)

where ∥v−SFx∥2 is the data fidelity term and R a regular-
izer [2], [17], [18]. Algorithms used to solve this optimization
problem require computing many gradients of the criterion
during their iterative processes. The computing cost of a
gradient of the data fidelity term

∇J(x) = F †S†(v − SFx) (7)

can be very high since it requires the computation of the
gridding and degridding. We proposed in this paper a new
formulation to reduce the computing cost of the gradient
evaluation without additional approximation.

III. SKY TO SKY GRADIENT COMPUTATION METHOD

A. Gridding and degridding decomposition

A way to implement the gridding operator S† is to decom-
pose it into three sub-operators : accumulation, convolution,
and subsampling.

1) Accumulation A†.
Let’s define g′ an oversampled 2D grid of size KN ×
KN = K2P with thin pixel resolution (∆u,∆v). The
pixel value associated with the coordinate bp is

g′(bp) =

{∑
i vi if b̃i = bp,

0 otherwise,
(8)

where g′ is a grid of accumulated visibilities that are
approximated at the same position on the thin grid. Then,
the accumulation operator is A† ∈ {0, 1}K2P×M with
one 1 per column.

2) Convolution C†.
Considering a 2D grid g̃ of size KN ×KN with thin
step resolution (∆u,∆v) (same size as g′). This step is
a two-dimensional discrete convolution between the thin
grid g′ and the kernel C†, such as the value associated
to the coordinate bp is

g̃(bp) =
∑
i

∑
j

C†
(
bp − bij

)
g′(bij). (9)

3) Sub-sampling O†.
The FFT grid is coarser by a factor K regarding the
oversampled grid. The sub-sampling operator O† is then
a P × K2P matrix, filled with one 1 per line and 0
otherwise.

Therefore, the gridding step, illustrated by Fig. 1, can be
written as

S† = O†C†A†. (10)

In practice, these operators are not instantiated as a matrix but
are implicit, being applied by dedicated code.

The degridding operator S is the adjoint of the gridding S†.
Thus, from Eq. (10), we can define the degridding decompo-
sition as

S = ACO, (11)

where O is an oversampling operator filling with zeros,
C is a convolution but with a flipped kernel, and A is a
sampling–mapping operator that builds M visibilities from
K2P coefficients. This decomposition is illustrated Fig. 2.

B. The gradient computation optimization

The standard method to compute the gradient operator
described by Eq. (7) can be developed such as it becomes

∇J(x) = F †S†v − F †S†SFx

= y − F †S†SFx.
(12)

This decomposition, mentioned by the Fast Holographic De-
convolution (FHD) [19], will be referred to as the Sky to Sky
method (S2S). We can note that FS†v is the dirty image y,



Fig. 1. Gridding decomposition. First, accumulation of visibilities on a 2D
thin grid of size KN × KM , then a 2D discrete convolution with a kernel
C†, and finally, a K sub-sampling.

Fig. 2. Degridding decomposition. First, oversampling of a map g with a
factor K, then a 2D discrete convolution with a kernel C, and finally, a
mapping operator A maps the Fourier coefficients to M visiblities.

which is computed only once. Based on the above develop-
ment, the succession of degridding and gridding operators can
be rewritten as

S†S = O†C†A†ACO (13)

with A†A = A∗, and A∗ ∈ NK2P×K2P a diagonal matrix,
such as a = diag(A∗). The value of each element of a
corresponds to the number of visibilities approximated to the
corresponding thin coordinate. This decomposition is illus-
trated by Fig. 3. We define M ′ as the number of non-zero
elements in a. With M the number of raw data, practical cases
show that M > M ′ or M ≫ M ′ regarding the oversampling
factor K. Consequently, the S2S method avoids processing the
M−vector of raw visibilities, but instead processes a smaller
M ′−vector. Moreover, unlike FHD [19] who builds and stores
S†S ∈ CP×P as a matrix, we only need to build the sparse
vector a. Thus, Eq. (13) writes

g′(bk) =

M ′∑
i′=1

C†
(
bk−bi′

)
ai′

∑
i,j

C

(
bi′−bij

)
g(bij). (14)

For the same oversampling factor, the gradient computed by
the S2S method Eq. (12) and the STD method Eq. (7) is the
same. Furthermore, the computing cost of the gradient using
the S2S method is given by

2M ′C2
supp +M ′ + 2P logP + P (15)

while the computing cost of the standard approach is

2MC2
supp + 2P logP +M. (16)

Hence, for the same K, the presented method is more efficient
without additional errors when

M ′ <
2MC2

supp +M − P

2C2
supp + 1

. (17)

Fig. 3. Degridding and gridding decomposition using the sky to sky method.
The visibility vector is not necessary anymore.

IV. EXPERIMENTS AND RESULTS

The experiment aims to show the advantage of using the S2S
method to improve the speedup of a gradient evaluation and to
show the impact on memory usage regarding the oversampling
factor used. Moreover, contrary to FHD [19], we do not need
to store the few gigabytes matrix but use an implicit operator.
Simulated visibilities have been generated following Eq. (2)
for an 8 hours and 64 frequency channels observation of the
VLA-D with 1 sec dump time between two samples and
a single polarization. All the experiments were performed
on a BullSequana X400 system based on Intel(R) Xeon(R)
Platinum 8358 processor, computing a first implementation of
parallel Cython code.

A. Gradient computation results

For the same oversampling factor K, the STD and S2S
methods produce the same result without additional error.
However, the S2S method’s efficiency depends on K.

1) Oversampling factor error: Visibilities approximated
coordinates b̃i depend on K. As shown by [20], a low
oversampling factor involves a higher error. The value K = 63
is often used in different imaging algorithms that use gridding
and degridding operators. We will then take the gradient
computed with this oversampling factor with raw data as a
reference. Fig. 4 and 5 show the maximum error

MaxAE(K) = max(
∣∣∇(xK=63)−∇(xK=j)|) (18)

and the mean absolute error between gradients

MAE(K) =
1

P

P∑
i=0

|∇(xi,K=63)−∇(xi,K=j)|. (19)

As expected, the error increase as the oversampling factor de-
crease. Moreover, it is common to use an averaging technique
to reduce the amount of data to process, even if it introduces a
decorrelation [1] which causes information loss and artifacts.
In our case, we averaged the data over 10 seconds to see the
error’s impact. As expected, the error is higher but merge the
raw data curve for low oversampling factors.



2) Time cost: The computation time for raw and averaged
data is shown in table I. For any oversampling factor and any
data set, the proposed method produces the same result as the
STD method with a faster computation time. As expected, the
computation time using the STD method is constant over the
oversampling factors. On the other hand, the S2S computation
time decreases regarding K. For K = 5, the S2S method
computes ∇J(x) using raw data without additional approxi-
mation but with an acceleration factor of 16.3. Moreover, the
computation time of raw for K up to 15 using S2S is lower
than the STD method for any K using average data.

5 15 35 63
K

10−6

10−5

10−4
Raw data

Averaged data

Fig. 4. Mean absolute error.

5 15 35 63
K

10−5

10−4

10−3

Raw data

Averaged data

Fig. 5. Maximum absolute error.

K STD S2S (speedup) STD ave. S2S ave. (speedup)

5 242.9 14.8 (×16.4) 33.7 13.9 (×2.4)
15 242.9 24.1 (×10.0) 33.7 22.1 (×1.6)
35 242.9 43.9 (×5.6) 33.7 27.0 (×1.3)
63 242.9 71.8 (×3.4) 33.7 28.5 (×1.2)

TABLE I
TIME IN SECONDES TO COMPUTE THE GRADIENT.

3) Memory cost: Finally, we compare the memory con-
sumption between the standard and proposed S2S methods.
The first method needs to keep in memory the visibilities
for all frequency channels and their coordinates on the (u, v)
plan. The latter method needs to keep in memory the dirty
images for each channel and the sparse vector a. The memory
consumption for the raw data of the test case is shown in
table II. As M ≫ P , the proposed method allows a lower
memory cost. Moreover, with low K, visibilities coordinates
approximation on the thin grid is more substantial, and con-
sequently, the sparse vector a is smaller. Results for averaged
data are also shown in table II. The memory cost of the
proposed method is slightly higher than the standard method
because of dirty image storage.

K STD S2S STD ave. S2S ave.

5 1.94 0.46 0.20 0.45
15 1.94 0.59 0.20 0.55
35 1.94 0.85 0.20 0.63
63 1.94 1.20 0.20 0.65

TABLE II
MEMORY CONSUMPTION NEEDED TO COMPUTE THE GRADIENT IN GB.

B. Sky estimation method results

The estimation of the simulated sky, consisting of 50 points
sources with ranged amplitudes from 2 × 10−2 to 1, has
been done using the Cotton-Schwab CLEAN [21] algorithm.
This iterative algorithm, detailed by [22], is divided into two
main parts. The first part, known as major-cycle, aims to

compute the gradient of the data fidelity term ∇J(x(k)). We
implemented the custom S2S method to compute ∇J(x(k))
as Eq. (12). The second part, also known as minor-cycle,
builds iteratively an estimation x(k+1) from ∇J(x)(k+1) and
F †S†SF approximated as a convolution. These two steps are
repeated until a global stopping criterion is reached.

−1 0

l ×10−2

−5

0

5

m

×10−3

(a)

−1 0

l ×10−2

−5

0

5

×10−3

(b)

0.00

0.25

0.50

0.75

Fig. 6. Zoom on 400× 400 pixels : (a) Dirty image (b) Restoration.
The panel of Fig. 6 shows a zoom of the dirty image. We

performed two major cycles and 2500 minor cycles with a
clean gain of 20%. All the initial point sources are identified
in the restored image as illustrated on the right panel of Fig. 6.
Moreover, table. III shows the time to perform the algorithm
for each case. Again, we obtain acceleration factors every time
the proposed method is used instead of the STD method. When
using the raw data, the maximum speedup is up to 3.44.

K STD S2S (speedup) STD ave. S2S ave. (speedup)

5 641.2 186.8 (×3.4) 117.3 77.8 (×1.5)
15 641.2 201.1 (×3.2) 117.3 94.0 (×1.2)
35 641.2 240.6 (×2.7) 117.3 103.8 (×1.1)
63 641.2 296.4 (×2.1) 117.3 106.8 (×1.1)

TABLE III
TIME IN SECSONDES TO COMPUTE THE CLEAN ALGORITHM.

V. CONCLUSION

This paper shows a decomposition of the gridding and
degridding operators used in radio interferometry imaging
problems. We proposed a sky to sky (S2S) method to reduce
the computing cost without additional error when these oper-
ators are used successively. While the FHD [19] algorithm
shows a high acceleration factor at the price of excessive
memory consumption, the S2S method allows a reduction of
the memory cost while having an acceleration factor up to
16.4 regarding the standard method. The estimation of a sky,
simulated with an 8 hours observation with the VLA telescope,
has shown an acceleration factor up to 3.4 for the full
reconstruction algorithm. Finally, our experiments have shown
that the S2S method is always computationally more efficient
than the standard method for the same gridding parameters.
In future work, we plan to enhance the capabilities of the S2S
method with code optimization and a GPU implementation.
Moreover, the S2S method makes gradient descent algorithms
computationally doable. We plan to explore this field and
develop a preconditioner to reduce the number of gradient
evaluations required.
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